MATH2050C Selected Solution to Assignment 10

Section 5.1 no. 3, 4ac, 5, 8, 10, 13.

(4a) The function f(x) = [x] is continuous except at all integers.

(4b) The function $h(x) = [\sin x]$ is continuous whenever $\sin x$ is not equal to -1, 0, 1. At x = 0, $[\sin x] = 0$ for small x > 0 but $[\sin x] = -1$ for small x < 0, so it is not continuous at 0. Similarly, it is not continuous at all $n\pi$. On the other hand, $\sin x = 1$ if and only if $x = (2n + 1/2)\pi$, $n \in \mathbb{Z}$. For x close to $(2n + 1/2)\pi$ from its right or left, $\sin x$ is very close to 1 but less than 1, so $[\sin x] = 0$, h is not continuous at $(2n + 1/2)\pi$. Similarly, it is not continuous at all $(2n + 1 + 1/2)\pi$. Conclusion: The discontinuity set of h is $\{n\pi, (n + 1/2)\pi\}, n \in \mathbb{Z}$.

(5) We have

$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2} = \lim_{x \to 2} (x + 3) = 5 .$$

Therefore, the function F(x) = f(x) when $x \neq 2$ and F(2) = 5 is a continuous function which extends f.

(13) Let x_0 be a continuity point of g. Let $\{x_n\}$ be a sequence of rational numbers tending to x_0 . By continuity at $x_0, g(x_0) = \lim_{n \to \infty} g(x_n) = \lim_{x \to x_0} 2x_n = 2x_0$. On the other hand, let $\{y_n\}$ be an irrational sequence tending to x_0 . We have $g(x_0) = \lim_{n \to \infty} g(y_n) = \lim_{n \to \infty} (y_n + 3) = x_0 + 3$. We get $2x_0 = x_0 + 3$ which implies $x_0 = 3$. Conclusion: 3 is the unique continuity point for g.

Section 5.2 no. 1bc, 3, 7, 10, 11, 15.

(1b) g is continuous on $[0,\infty)$. For, both x and \sqrt{x} are continuous functions on $[0,\infty)$, so is their sum $x + \sqrt{x} \in [0,\infty)$. As the function $y \mapsto \sqrt{y}$ is continuous on $[0,\infty)$, the composite function $g(x) = \sqrt{x + \sqrt{x}}$ is continuous on $[0,\infty)$.

(1c) $\sin x$ and the absolute value (function) are continuous on $(-\infty, \infty)$, so is their composite $|\sin x|$. It follows that $\sqrt{1+|\sin x|}$ (the composite of $1+|\sin x|$ and the square root function) is continuous on $(-\infty, \infty)$. As the quotient of two continuous functions is continuous away from where the denominator vanishes, we conclude that h is continuous on $(-\infty, 0) \cup (0, \infty)$.

(7) Just let f(x) = 1 at rational x and f(x) = -1 at irrational x.

(10) Let $P = \{x \in \mathbb{R} : f(x) > 0\}$ where f is continuous everywhere. Let $c \in P$. By continuity, for $\varepsilon > 0$, there is some $\delta > 0$ such that $|f(x) - f(c)| < \varepsilon$ for all $x, |x - c| < \delta$. Now, we choose $\varepsilon = f(c)/2$ and denote the corresponding δ by δ_0 . Then |f(x) - f(c)| < f(c)/2 implies f(x) > f(c) - f(c)/2 = f(c)/2 > 0 for all $x, |x - c| < \delta_0$. In other words, $(c - \delta_0, c + \delta_0) \subset P$. (I do not use the notation $V_{\delta}(c)$.)

Note. This will be a commonly used fact.

(15) The formula

$$h(x) = \sup\{f(x), g(x)\} = \frac{1}{2}(f(x) + g(x)) + \frac{1}{2}|f(x) - g(x)|$$

is easily proved by considering each case $f(x) \ge g(x)$ or $f(x) \le g(x)$. This formula clearly shows that h is continuous whenever f and g are continuous.

Note. Can you find a corresponding formula for $\inf\{f, g\}$?